Perfor mance Analysis of Various Mechanisms
for Inter-process Communication

Kwame Wright
Department of Electrical Engineering
The Cooper Union
wright2@cooper.edu

Abstract

Unix-based operating systems feature several forms
of Inter-Process Communication (IPC) including
pipes, Unix domain sockets, TCP/IP sockets, FIFOs,
semaphores, and signals. Although these mechanisms
provide similar services, each is designed differently
with varying levels of performance. To better un-
derstand how these mechanisms work and why they
perform the way they do, their implementations were
analyzed. Pipes, Unix domain sockets, and TCP/IP
sockets are commonly used mechanisms and are the
focus of this project. Although they allow for com-
munication between processes on the same machine,
their performance in terms of throughput can vary
significantly on the same platform.

The analysis of the IPC mechanisms involved exam-
ining the kernel source code of the Linux operating
system and developing benchmark utilities to mea-
sure their performance. Overall, Unix domain sockets
have proven to be the fastest mechanism, in many
cases performing over two times faster than pipes
and TCP/IP sockets. On the Intel Pentium 111/4/Xeon
processor systems used, pipes performed better than
TCP/IP sockets over loopback, but the contrary was
true for systems using Sun’s UltraSPARC Tl processor.
This paper describes the tools developed and methods
used to profile the IPC mechanisms.

1. Introduction

One important operating system responsibility is
process management. In addition to process scheduling
and resource allocation, an operating system must
provide methods for separate processes to communi-
cate with each other. These methods are known as
Inter-Process Communication (IPC) mechanisms. IPC
mechanisms allow for information sharing between

Kartik Gopalan Hui Kang
Department of Computer Science
Binghamton University
{kartik, hkang} @cs.binghamton.edu

processes and convenience for the user. In addition,
they provide a way to modularize the operating system
and to parallelize programs for computational speedup
[1].

Prior research on improving IPC mechanisms has
been done by Jochen Liedtke as described in his paper
Improving IPC by Kernel Design. He realized the
importance of IPC performance in modern operating
systems and believed that unless they were fast, they
would become unattractive for programmers, leading
to inadequate use of threads and multitasking [2].
Liedtke’s project focused on microkernels while this
project focuses on the Linux kernel.

The idea for this project came from an interest in
virtual machines. The concept of the virtual machine
has been around since the 1960s. A virtual machine is
an isolated execution environment within a computer
allowing for multiple operating systems to be run
simultaneously. Although hardware limitations have
stunted the growth of virtual machines during the
years following its conception, it is how more widely
used due to the advances in computer technology.
Processors are now fast enough, and memories are
now large enough to allow for practical applications
of virtual machines. Two examples of virtual machine
monitors, or host software, are VMware and Xen [3].

The growing applications for virtual machines have
led to the development of hardware optimizations.
AMD and Intel, for example, both offer processor
enhancements on some of their models to help improve
the performance of virtual machines. Improvements
are also being made on the software side in areas
such as IPC. Imagine a single computer running two
virtual machines. If one application running on one of
the virtual machines wanted to exchange data with an
application running on the other, it would have to do so
via a software network using a standard network IPC
mechanism such as a TCP socket. This is additional

overhead as compared to the same two applications
running on a single-domain machine.

Developments are in progress to design efficient
IPC mechanisms specifically for communication be-
tween virtual machines. XenSockets and XWay are two
examples. This project attempts to better understand
how current IPC mechanisms work. The information
gathered from this project will help improve existing
mechanisms, and design new mechanisms that could
be used directly between virtual machines.

2. Benchmarking Tools

2.1. Developed Software

Three utilities, pipesend, udsocketsend, and
tcpsocketsend were developed to assist in bench-
marking the three IPC mechanisms used. The three
programs used pipes, Unix domain sockets, and
TCP/IP sockets, respectively, to transmit a specified
amount of data to a forked child process. They support
up to four arguments to customize their functionality.
These arguments are bytes_to_send, buffer_size, repe-
titions, and logname_append.

Bytes to_send tells the program how much data to
transmit, buffer_size the amount of data to send with
each call of write, repetitions the number of times
to repeat the transmission, and logname_append the
string to append to the name of the log file generated.
The output of each utility follows the same format.
They return whether data was sent or received, the
amount of data that was transferred, the time it took
for the transfer to complete, the average rate at which
the data was transferred, and the buffer size used.

2.2. OProfile

OProfile is a system-wide profiler for the Linux
operating system. This software was used to profile
the kernel while the three IPC mechanisms were being
utilized, which allowed for a more in-depth analysis of
the IPC mechanisms.

OProfile is freely available under the GNU GPL
license. Version 0.9.2 of the profiler was used.

2.3. Test Hardware

Table 1 shows the 45 machines that were used to
run the benchmarks.

Table 1: Hardware Tested

Hostname RAM CPU
alexander
clausewitz
drake
eisenhower
hannibal
khan
macarthur
marshall 1GB
montgomery
nimitz
patton
rommel
sun-tzu
washington
yamamoto
echo

foxtrot 256MB
golf
hotel 527MB
india

juliet 384MB
krogoth
maverick
brawn
bumblebee
grimlock
inferno
ironhide
prowl 512MB
ratchet
slag

snarl
Swoop
wheeljack
carrera
charger
countach
gto
mustang
testarosa
alpha 384MB
bravo
charlie 256MB
delta
schroon* 3GB

*Only used for OProfile

(2) Intel Xeon Dual-Core 2.00GHz

Sun UltraSPARC Ili

8GB (2) Intel Xeon Dual-Core 2.66GHz

Intel Pentium 4 2.53GHz

1GB Intel Pentium 4 2.26GHz

(2) Intel Pentium Il

AMD Athlon 64 X2 3800+

3. Performance Evaluation

3.1. Black-box Assessment

3.1.1. Methodology. To determine the relative perfor-
mance of the IPC mechanisms, each was subjected to
two benchmarks. These two benchmarks determined
the raw throughput of each mechanism under different
circumstances. The first benchmark involved transfer-
ing data ranging in size from 1 MB to 100 MBs with an
equivalent buffer size so that there was only one system
call being made to write. The second benchmark
involved sending a fixed amount of data, 100 MBs,
with varying buffer sizes from 100 KBs to 100 MBs.

There is a significant amount of overhead involved
in making system calls due to the context switching
[4]. The second benchmark was designed to get a
better understanding of how the various combinations
of memory operations and context switching affected
performance. Both benchmarks were performed on
many machines with varying hardware configurations
to not only minimize the effects of the differences
in hardware, but to also understand what effect the
hardware had on these mechanisms.

3.1.2. Observations. It was hypothesized that pipes
would have the highest throughtput due to its limited
functionality, since it is half-duplex, but this was not
true. For almost all of the data sizes transferred, Unix
domain sockets performed better than both TCP sock-
ets and pipes, as can be seen in Figure 1 below. Figure
1 shows the transfer rates for the IPC mechanisms, but
it should be noted that they do not represent the speeds
obtained by all of the test machines. The transfer
rates are consistent across the machines with similar
hardware configurations though. On some machines,
Unix domain sockets reached transfer rates as high as
1500 MB/s.

Throughput
1000

900 - e e
800 - ‘
700 +
600 -
500 -

400 |/

Transfer Rate (MB/s)

300 -/

ﬁ Pipe (rx) 4

o Unix Domain (rx) --------

| | | | | ,) TCP () -

10 20 30 40 50 60 70 80 90 100
Data Size (MB)

Figure 1: Benchmark 1 on bumblebee

For small data sizes, the throughput of Unix domain
sockets was below that of pipes. Investigation of the
cause was inconclusive because the results were not
consistent across all machines. On the Intel processor
machines, pipes performed better than TCP sockets
(see Figure 1). This was not true for the machines using
the UltraSPARC processor. This is probably due to
the UltraSPARC system’s design for network-intensive
applications. It was not expected, but at the same time
it is not entirely surprising that this was the case. There
will be further research to determine what caused this
to happen.

Figure 2 shows the results of the second benchmark.
While the performance of pipes and TCP sockets re-
mained relatively stable, Unix domain sockets showed
a major decrease in performance as the buffer size
increased.

Throughput (100MB Transfer)
T T

1800 T T T
Pipe (rx)

Unix Domain (rx) --------

TCP (rx) = 1

1600 |
wof 7
1200 |

1000

Transfer Rate (MB/s)

800 -

600

“w -

200 L L L L L L L \ V\”
0 10 20 30 40 50 60 70 80 9 100

Buffer Size (MB)

Figure 2: Benchmark 2 on bumblebee

This is an interesting result because as the buffer
size is increased, the number of write system calls
decreases, meaning there is less context switching
overhead involved. Unix domain sockets exhibited
about double the throughput when it dealt with small
pieces of data at a time, but further investigation will
be needed before any conclusions can be drawn.

3.2. Gray-box Assessment

3.2.1. Methodology. For a few data sizes ranging
from 1 KB to 100 MBs, the benchmark tools were
monitored using OProfile which allowed for the sys-
tem call usage to be monitored for each program.
Using the merge parameter of the opreport tool
included with OProfile, the events could be separated
by the individual applications, process ids, or CPUs
allowing for an even better understanding of what
was taking place as the IPC mechanisms were being
used. Since the benchmarking tools used a forked
child to send/receive data, separating the reports by
process id allowed for the isolation of the sender
from the receiver. The profiling utility was set to take
samples on CPU_CLK_UNHALTED events, or cycles
out of halt state, every three-thousand counts. Figure
3 shows histograms for the reports from the 1KB
and 100MB transfers for comparison. Note that the
symbols are listed in order of increasing percentage,
with the smallest at the top.

3.2.2. Observations. At about 1 MB for all of
the mechanisms, memory copies from user-space to

Unix Domain Sockets

1KB Transfer 100MB Transfer

100 100 -
80 80

g 60| g e0f

P P

o2 2

g £

3 5

L N § 4o
20 20

0 0

Symbols (top 5) Symbols (top 5)

=72 kunmap_atomic "2 sysenter_past_esp
do sock_alloc_send_skb

] X __handle_mm_fault

== (no symbols) __copy_to_user_lI
(no symbols) ‘ __copy_from_user_ll

Pipes

1KB Transfer 100MB Transfer
100 100
80 80
g e0f g ef
@ @
2 2
3 =3
& 5
§ 40F g 40r
20 20 |
0 0
Symbols (top 5) Symbols (top 5)
unmap_atomic native_flush_tlb_single
o_wp_ page kunmap_atomic
__handle_mm_fault get_page_from_freelist
2 {no symbols) === _ copy to_user Il
(no symbols) 5 —copy_from_user_Il_nozero

TCP Sockets

1KB Transfer 100MB Transfer

100 100
80 80

g 60} g ef

@ @

2 2

=3 a

& 5

& o & 40 |-
20 20 |

0 0

Symbols (top 5) Symbols (top 5)

kunmap_atomic
do_wp._ page top_va 1
__handle_mm_fault tcp_sendmsg

(no symbols) __copy_to_user_lI
(no symbols) L __copy_from_user_II

get_page_from_freelist

Figure 3: Histograms of OProfile reports

kernel-space, and vice versa, became the dominating
symbols, or functions, taking up at least 50% of
all the events detected by OProfile. This percentage
increases for all of the mechanisms as the transfer
sizes become larger, but it does so at different rates
and the mechanisms continue to exhibit performance
differences up to 100 MB. The ’(no symbols)’ shown
on the histograms are associated with libc-2.5.s0 and

1d-2.5.s0. OProfile was unable to report on them be-
cause they were not compiled with debugging options,
but this problem will be revised.

4. Conclusion

Unix domain sockets have proven to deliver the
highest throughput when compared to the other mecha-
nisms. While its dominance is still unclear for transfers
of small amounts of data, it is otherwise the best
mechanism to use within a single machine.

Now that the IPC mechanisms have been analyzed,
the next step is to attempt to develop performance
optimizations for them. This will involve hands-on
work with the kernel source code. Significant results
in this area are not guaranteed but it will provide a
better understanding of IPCs which can be applied to
developing new mechanisms for virtual machines, or
enhancing existing ones.

Acknowledgments

Thanks goes to Michael Lewis for proofreading this
paper and providing helpful suggestions. This paper
was written using IATEX.

References

[1] Abraham Silberschatz, Peter Baer Galvin, and Greg
Gagne. Operating System Concepts, 7th edition. John
Wiley & Sons, Hoboken, NJ, 2005.

[2] Jochen Liedtke. Improving IPC by kernel design. In
SOSP '93: Proceedings of the fourteenth ACM sympo-
sium on Operating systems principles, pages 175-188,
New York, NY, USA, 1993. ACM Press.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, lan Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
SOSP '03: Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles, pages 164-177,
New York, NY, USA, 2003. ACM Press.

[4] Brian N. Bershad, Thomas E. Anderson, Edward D.
Lazowska, and Henry M. Levy. User-level interpro-
cess communication for shared memory multiprocessors.
ACM Trans. Comput. Syst., 9(2):175-198, 1991.

[5] W. Richard Stevens and Stephen A. Rago. Advanced
Programming in the Unix Environment. Addison-Wesley,
Westford, Massachusetts, 1992.

[6] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff.
Unix Network Programming: The Sockets Networking
API, Volume 1 - Third Edition. Addison-Wesley, West-
ford, Massachusetts, 2004.

