
1 Computer Scien
iand

Jerrold W. GROSS
Department of Mathematical Sciences, Oakland Cmiwrsity, Rochester, MI 48309, U.S.A.

. Suzanne ZEIT
Apartment of Computer Science and Engineering, Oakland University, Rochester, A41 48309, U.S. A.

CommuGcated by A. Salomaa
Received December 1986

Abstract. The Ackermann function is defined recursiveiy by A(0, n) = n + 1; A(i, 0) = A(i - 1,l)
for i > 0; and A(i n) = A(i - 1, A(i n - 1)) for 4 n > 0. An iterative algorithm for computing A(i, n)
is presented. It has O(i) space complexity and O(iA(i, n)) time complexity, both of which are
much smaller than the corresponding quantities for an algorithm based directly on the recursive
definition.

Of theoretical interest in computer science is a function A:
Wilhelm Ackermann. To logicians, it is the canonical exampl
that is not primitive recursive. A sort of “inverse” of the function plays a role in
measuring the time complexity of algorithms for set manipulation [7], finding short
cycles of even lengths in graphs [4], and job scheduling with two processors [2],
to namle ut a few applications. Because its definition is highly recursive in form,
it has been used to measure performance of implementations of recursive subroutine
calls in programming languages [8].

In this note we present a new way to look at the Ackermann function.
approach is iterative rather than recursive, and we will view its computation as an
exercise in coun ing (in the naive sense), rather than an exercise in
the applropriate model our algorithm for computing values of
function uses space proportio al to the indexing variable and time almost propor-
tional to the value of t e function, consi

rformance of the usual algorithms.
egi .

0304-3975/88/$X50 @ 1988, Elsevier Science Publishers B.V. (North-Holland)

328

nition.
integers,

J,w. GrQSStna~ a?iman

The Ackmnann function A : N x N-, N, where N is the set of nonnegative
defined by

I n+l if i=O,

A(i, n) = A(i- 1,l) ifi>Oandn=O,
A(i-l,A(i,n-1)) ifi>OandnrO.

We call i the indexing variable-

It is an easy exercise to obtain the following explicit formulas, which indicate
how explosively the values A(i, n) grow:

A(O,n)=Hl, A(l,n)=n+2,

A(2, n)=2n+3, A(3, :) = 2”+3 - 3, (*)

A(4, n) = 22”2 -3 (M-3 twos).

We feel compelled to digress for a historical comment that may eliminate some
of the confusion surrounding the Ackermann function. Some authors (Tarjan [7],
for example) use a variant of the function A, in which the formulas (*) come out
somewhat simpler at the expense of a more complicated definition. Ackerman&
original function (which he called cp) actually had three arguments, the last of which
was the indexing variable. It satisfied the formulas

(9(0,b,O)=a+& o(a,bS)=&

~(a, b, 2) = a”, ~(a, b, 3) = aa.“U,

with b a’s in the exponent, etc. That hardly anyone seems to have consulted
Ackermann’s original paper [I] is clear not only from the fact that the definition
of rp is given wrong, but also from the fact that the title of the paper is misspelled
by nearly every author who references it. As far as we can determine, the standard
definition of A we give here was first used by Raphael Robinson [6] twenty years
after Ackermann’s paper, although a nearly identical function was defined by Rozsa
Peter [S] seven years after Ackermann. In fact, David Hilbert [3] described Acker-
mann’s function two years before his student Ackermann published the proof that
it was recursive but not primitive recursive (Hilbert credited the proof to Ackermann).
Maybe it should bear Hilbert’s name as well.

The function A is usually viewed in the context of the formulas (*). To compute
A(i, n) in general one either copies the definition into a recursive procedure, or else
USES a stack in the obvious way to mimic the recursion (see Algorithm 1).

m length of the stack in Algorithm 1 is A(i, n),
a model of computation in which any natural

ace required to compute A(i, n)
ust get recalculated repeatedly,

.

we Stackermann(i, n)
stack is initially empty}
usb i onto stack

n onto stack
stack has more tha

pop n-current from s

nt + 1 onto stack

pusb i-cwrent - 1 onto stat
push 1 onto stack

e ia
push i-current - 1 onto stack
push i-current onto stack
push n-current - 1 onto stack
end

end while
pop n-current from stack
return n-current {the value of A(i, n)}
end Stackertnann

Algorithm 1. Using a stack to compute A(i, n) recursively.

Reflection on the definition of A shows that the sequences A(i, 0) for i = 1,2,. . .

are simply more and more rarefied increasing sequences of integers, each a sub-
sequence of the previous one, where the particular elements chosen are determined
by the subsequence being generated. Figure 1 indicates what happens for the first
few values of i.

To calculate values of the Ackermann function, it will be sufficient to keep track
of where we are in each subsequence (array next in Algorithm 2) and where we
need to reach before transferring the value just calculated to the next subsequence
(array goal in Algorithm 2). Filling in the details, we get Algorithm 2, the proof of
whose correctness is left to the reader.

If we again assume that any integer can be stored in-one word of memory, then
the space requirement is negligible; the following theorem is clear.

Thewem 1. Algorithm 2 requires O(i) space to compute A(i, n).

Furthermore, since essentially all the algorithm does is to count by ones (variable
value in Algorithm 2), from 1 to A(i, n), with a little extra bookkeeping, we have
the following result on its time requirement; again the proof is omitted.

i = 0: 1,2,5,4,5,&L &!&lo. ll,lJ, 13,14,15,16.17,. . .
i=l: 2,3,4,~,6,~,8,$10,&12,fi,14,&16,~,18 ,...
i = 2: 3,$, 7,9,11,l3,15,17,19,21,23,25,27,29,31,33,. . .
i = 3: 5,l3,29,61,125,253,509,1021,2045,4093,8189,16381,32765,65533,. . .
i =4: 13,65533,. . .

Fig. 1. TIE subsequences A(i, -) for 0 G i s 4.

330 J. W. Grossman RS. Zeitman

Procedure Ac&etmann(i, n)
{next and goal are arrays indexed from 0 to i, initialized so that next[O] through next[i]
are 0, goaltO] through goul[i- l] are 1, and goal[i] is -1)

value + nextEO] + 1
transferring f true
i-current +O
while transfewing do

ib next[i-current] = gd[i-cuwent] then goaf[i-current]+ value
else tmns$king + false

next[i-wrrent]c nexf[i-curmr)+l
i-current + i-cumwt -t- 1
emd while

until next[i] = n + 1
return u&e {the vaktie of A(j n))
end Ackewnann

Algorithm 2. Computing A(i, n) iteratively.

Theorem 2. Alpifhm 2 requires O(iA(i n)) time to compute A(4 n).

As a practical indication of the relative efficiency of these two algorithms (along
with the obvious recursive procedure), we timed the computation of A(3,S) on an
Apple Ile computer running UCSD Pascal programs of all three procedures. The
recursive version overflowed its system stack and could not obtain the answer.
Algorithm 1 required over three minutes of computation time (and took over 42,000
passes through the while loop) to obtain the answer of 253. Algorithm 2 took three
seconds. In fact, Algorithm 2 computed A(4,l) = 65533 in less than 12 minutes,
whereas Algorithm 1 would have run for several months.

eferences

Cl] W. Ackennann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928) 118-133.
[2] H. N. Gabow, An almost linear algorithm for two-processor scheduling, J. Assac Camp. Much. 29

(1982) 766-780.
134 D. Hilbert, aber das Unendliche, Math. Ann. 95 (1926) 161-190.
[4] B. Monien, The complexity of determining a shortest cycle of even length, in: Rot. 8th ConjI on

Graph-theoretic Concepts in Computer Science (WG 82), Neunkirchen (1982) 195-208.
[5] R. Pgter, Konstruktion nichtrekursiver Funktionen, Math. Ann. 111 (1935) 42-60.
[6] R. M. Robinson, Recursion and double recursion, 5uli. Amer. Math. Sot. 54 (1948) 987-993.
171 R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comp. Mach. 22 (1975)

215-225.
ES] B.A. Wichmann, Ackerman& function: a study in the efficiency of calling procedures, Nordisk

7Tdskr. Informationsbehundling (BIT) 16 (1976) 103-I 10.

