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Abstract. The Ackermann function is defined recursiveiy by A(0, n) = n + 1; A( i, 0) = A( i - 1,l) 
for i > 0; and A( i n) = A( i - 1, A( i n - 1)) for 4 n > 0. An iterative algorithm for computing A( i, n) 
is presented. It has O(i) space complexity and O(iA(i, n)) time complexity, both of which are 
much smaller than the corresponding quantities for an algorithm based directly on the recursive 
definition. 

Of theoretical interest in computer science is a function A: 
Wilhelm Ackermann. To logicians, it is the canonical exampl 
that is not primitive recursive. A sort of “inverse” of the function plays a role in 
measuring the time complexity of algorithms for set manipulation [7], finding short 
cycles of even lengths in graphs [4], and job scheduling with two processors [2], 
to namle ut a few applications. Because its definition is highly recursive in form, 
it has been used to measure performance of implementations of recursive subroutine 
calls in programming languages [8]. 

In this note we present a new way to look at the Ackermann function. 
approach is iterative rather than recursive, and we will view its computation as an 
exercise in coun ing (in the naive sense), rather than an exercise in 
the applropriate model our algorithm for computing values of 
function uses space proportio al to the indexing variable and time almost propor- 
tional to the value of t e function, consi 

rformance of the usual algorithms. 
egi . 
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nition. 
integers, 

J,w. GrQSStna~ a?iman 

The Ackmnann function A : N x N-, N, where N is the set of nonnegative 
defined by 

I n+l if i=O, 

A(i, n) = A(i- 1,l) ifi>Oandn=O, 
A(i-l,A(i,n-1)) ifi>OandnrO. 

We call i the indexing variable- 

It is an easy exercise to obtain the following explicit formulas, which indicate 
how explosively the values A(i, n) grow: 

A(O,n)=Hl, A(l,n)=n+2, 

A(2, n)=2n+3, A(3, : ) = 2”+3 - 3, (*) 

A(4, n) = 22”2 -3 (M-3 twos). 

We feel compelled to digress for a historical comment that may eliminate some 
of the confusion surrounding the Ackermann function. Some authors (Tarjan [7], 
for example) use a variant of the function A, in which the formulas (*) come out 
somewhat simpler at the expense of a more complicated definition. Ackerman& 
original function (which he called cp) actually had three arguments, the last of which 
was the indexing variable. It satisfied the formulas 

(9(0,b,O)=a+& o(a,bS)=& 

~(a, b, 2) = a”, ~(a, b, 3) = aa.“U, 

with b a’s in the exponent, etc. That hardly anyone seems to have consulted 
Ackermann’s original paper [I] is clear not only from the fact that the definition 
of rp is given wrong, but also from the fact that the title of the paper is misspelled 
by nearly every author who references it. As far as we can determine, the standard 
definition of A we give here was first used by Raphael Robinson [6] twenty years 
after Ackermann’s paper, although a nearly identical function was defined by Rozsa 
Peter [S] seven years after Ackermann. In fact, David Hilbert [3] described Acker- 
mann’s function two years before his student Ackermann published the proof that 
it was recursive but not primitive recursive (Hilbert credited the proof to Ackermann). 
Maybe it should bear Hilbert’s name as well. 

The function A is usually viewed in the context of the formulas (*). To compute 
A(i, n) in general one either copies the definition into a recursive procedure, or else 
USES a stack in the obvious way to mimic the recursion (see Algorithm 1). 

m length of the stack in Algorithm 1 is A( i, n), 
a model of computation in which any natural 

ace required to compute A( i, n) 
ust get recalculated repeatedly, 

. 



we Stackermann(i, n) 
stack is initially empty} 
usb i onto stack 

n onto stack 
stack has more tha 

pop n-current from s 

nt + 1 onto stack 

pusb i-cwrent - 1 onto stat 
push 1 onto stack 

e ia 
push i-current - 1 onto stack 
push i-current onto stack 
push n-current - 1 onto stack 
end 

end while 
pop n-current from stack 
return n-current {the value of A(i, n)} 
end Stackertnann 

Algorithm 1. Using a stack to compute A( i, n) recursively. 

Reflection on the definition of A shows that the sequences A( i, 0) for i = 1,2,. . . 

are simply more and more rarefied increasing sequences of integers, each a sub- 
sequence of the previous one, where the particular elements chosen are determined 
by the subsequence being generated. Figure 1 indicates what happens for the first 
few values of i. 

To calculate values of the Ackermann function, it will be sufficient to keep track 
of where we are in each subsequence (array next in Algorithm 2) and where we 
need to reach before transferring the value just calculated to the next subsequence 
(array goal in Algorithm 2). Filling in the details, we get Algorithm 2, the proof of 
whose correctness is left to the reader. 

If we again assume that any integer can be stored in-one word of memory, then 
the space requirement is negligible; the following theorem is clear. 

Thewem 1. Algorithm 2 requires O(i) space to compute A( i, n). 

Furthermore, since essentially all the algorithm does is to count by ones (variable 
value in Algorithm 2), from 1 to A(i, n), with a little extra bookkeeping, we have 
the following result on its time requirement; again the proof is omitted. 

i = 0: 1,2,5,4,5,&L &!&lo. ll,lJ, 13,14,15,16.17,. . . 
i=l: 2,3,4,~,6,~,8,$10,&12,fi,14,&16,~,18 ,... 
i = 2: 3,$, 7,9,11,l3,15,17,19,21,23,25,27,29,31,33,. . . 
i = 3: 5,l3,29,61,125,253,509,1021,2045,4093,8189,16381,32765,65533,. . . 
i =4: 13,65533,. . . 

Fig. 1. TIE subsequences A( i, - ) for 0 G i s 4. 



330 J. W. Grossman RS. Zeitman 

Procedure Ac&etmann(i, n) 
{next and goal are arrays indexed from 0 to i, initialized so that next[O] through next[i] 
are 0, goaltO] through goul[i- l] are 1, and goal[i] is -1) 

value + nextEO] + 1 
transferring f true 
i-current +O 
while transfewing do 

ib next[i-current] = gd[i-cuwent] then goaf[i-current]+ value 
else tmns$king + false 

next[i-wrrent]c nexf[i-curmr)+l 
i-current + i-cumwt -t- 1 
emd while 

until next[i] = n + 1 
return u&e {the vaktie of A(j n)) 
end Ackewnann 

Algorithm 2. Computing A(i, n) iteratively. 

Theorem 2. Alpifhm 2 requires O(iA(i n)) time to compute A(4 n). 

As a practical indication of the relative efficiency of these two algorithms (along 
with the obvious recursive procedure), we timed the computation of A(3,S) on an 
Apple Ile computer running UCSD Pascal programs of all three procedures. The 
recursive version overflowed its system stack and could not obtain the answer. 
Algorithm 1 required over three minutes of computation time (and took over 42,000 
passes through the while loop) to obtain the answer of 253. Algorithm 2 took three 
seconds. In fact, Algorithm 2 computed A(4,l) = 65533 in less than 12 minutes, 
whereas Algorithm 1 would have run for several months. 
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